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1 INTRODUCTION

Mass transport losses represent a significant inefficiency
in fuel cell systems. In fuel cells, the major mass trans-
port losses are associated with the transport of charged and
uncharged species in the electrolytic phase and the transport
of gas phase reactants and products. The causes for these
losses and their mathematical descriptions are the principal
issues discussed in this chapter. Other mass transport related
processes, such as catalyst sintering and membrane poison-
ing, may also affect fuel cell performance. In this review,
we consider only the effects of mass transport that pertain
to the movement of critical reactants and products. This
chapter begins with a simplified model of a fuel cell that
introduces many of the key components. This is followed
by brief descriptions of porous electrode theory, gas phase
mass transport, convective transport of liquids, transport
in electrolytic solutions, and numerical simulations of the
cathode of a proton exchange membrane (PEM) fuel cell.

Figure 1 shows a cross-sectional view of a PEM fuel cell
operating on reformed hydrocarbon fuel and air. Table 1
gives typical through-plane dimensions for the various
components. The membrane area may range from 1 cm2

for a lab-scale unit to 1 m2 for an automotive or stationary
power plant. All types of fuel cells discussed in this chapter
contain similar components, the major difference being the
nature of the electrolyte. Commonly encountered fuel cell
electrolytes include phosphoric acid, potassium hydroxide,

cation exchange membranes, molten carbonate, and solid
oxides.

The fuel is fed into the anode flow field, moves through
the diffusion medium, and reacts electrochemically at the
anode catalyst layer. The diffusion medium is typically a
carbon cloth or carbon paper, possibly treated with Teflon.
The catalyst layer usually contains a platinum alloy sup-
ported on carbon and an ionomeric membrane material such
as Nafion. For an acid fuel cell operating with hydro-
gen as the fuel, the hydrogen oxidizes according to the
reaction

H2 −−−→ 2H+ + 2e− (1)

The oxidant, usually oxygen in air, is fed into the cathode
flow field, moves through the diffusion medium, and is
reduced at the cathode according to the reaction

4H+ + 4e− + O2 −−−→ 2H2O (2)

The water, either liquid or vapor, produced by the reduction
of oxygen at the cathode exits the fuel cell through either
the cathode or the anode flow field. This movement must be
accomplished without hindering the transport of reactants
to the catalyst layers in order for the fuel cell to operate
efficiently. Adding equations (1) and (2) yields the overall
reaction

2H2 + O2 −−−→ 2H2O (3)
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Figure 1. Schematic diagram of a hydrogen polymer electrolyte membrane fuel cell.

Table 1. Thickness of fuel cell components.

Component Thickness (µm) Reference

Flow channel 3000 40
Diffusion medium 100–300 43
Catalyst layer 5–25 10
Membrane 10–200 40

The electrons generated at the anode pass through an
external circuit and may be used to perform work before
they are consumed at the cathode. The maximum work that
the fuel cell can deliver may be found by considering the
theoretical open-circuit potential of the cell. A typical PEM
cell can be represented as
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(4)

where each Greek letter identifies a distinct phase and the
wavy lines imply that the membrane phase boundary is not
sharp; rather, the membrane extends into adjacent regions
and may include water activity gradients. The potential of
this cell is

FU = −F(�α − �α′
) = µα

e− − µα′
e− (5)

where F is Faraday’s constant, U is the thermodynamically
defined reversible cell potential, �α is the electrical poten-
tial of phase α, and µα

e− is the electrochemical potential of
electrons in phase α. After introducing expressions for the
activities of the various components, this becomes

FU = FU θ + RT

2
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β′
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β
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where a
β

i is the activity of species i in phase β, R is
the ideal gas constant, T is the absolute temperature,
and U θ is the standard cell potential, a combination of
appropriately chosen reference states. This equation reduces
to the familiar Nernst equation when the gases are assumed
to be ideal and activity gradients in the electrolyte are
neglected.

1.1 Introductory model

A good way to introduce the subject is to begin with a
simple steady state model that captures the gross behavior
of a fuel cell. For our example, we consider a phosphoric
acid fuel cell operating on a reformed hydrocarbon fuel and
air at atmospheric pressure and a temperature of 190 ◦C. If
the fuel and air streams flow cocurrently, and all of the
product water leaves with the air stream, then it is possible
to relate the gas compositions in the two flow channels
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to the fuel utilization by means of material balances and
Faraday’s law. The hydrogen utilization at any point along
the channel can be defined as

u = X0
H2

− XH2

X0
H2

(7)

where XH2
is the molar flow rate of hydrogen divided by

the molar flow rate of inerts, principally carbon dioxide, in
the fuel stream. The superscript 0 denotes the value at the
inlet of the flow field. Faraday’s law can then be used to
relate the amount of hydrogen reacted to the current

d

dy
(XH2

Fa) = − iW

2F
(8)

where i is the local current density, W is the width perpen-
dicular to the flow, y is the distance down the flow field
channel, and Fa is the molar flow rate of inerts at the anode.
Similar expressions can be written for water and oxygen at
the cathode. Using the reaction stoichiometry and Faraday’s
law, we get

X0
H2

u = (XH2O − X0
H2O)f = 2(X0

O2
− XO2

)f (9)

where Xi is the ratio of moles of component i to moles of
inerts in the same stream and f is the ratio of moles of inerts
in the air stream to moles of inerts in the fuel stream. The
first equality arises directly from our assumption that all of
the product water exits the fuel cell in the air stream. While
this assumption is not generally true, it does serve as a
useful starting point. Thus, the gas compositions in the flow
channel are entirely determined by u, f , and the inlet gas
composition; such a simple relationship is impossible when
the gases are not fed cocurrently. However, this analysis
should provide a reasonable approximation of the true
behavior when one of the electrodes is limiting. Figure 2
shows the mole fractions when a dry, equimolar mixture of
hydrogen and carbon dioxide is fed to the anode, and dry
air, 20% in excess of the stoichiometric amount, is fed to
the cathode. In practice, performance gains due to adding
more air must be balanced against the costs and parasitic
power losses of pumping the air.

Figure 3 shows a typical fuel cell polarization curve. The
curve includes a sharp drop in potential at low current
densities due to the sluggish kinetics of the oxygen reduc-
tion reaction (ORR). This part of the polarization curve is
commonly called the kinetic regime. At moderate current
densities, the cell enters an ohmic regime where the cell
potential varies nearly linearly with current density. At high
current densities, mass transport resistance dominates, and
the potential of the cell declines rapidly as the concentration
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Figure 2. Composition of gas streams. The feed is 50% hydrogen
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Figure 3. Example of a polarization curve showing the losses
associated with irreversibilities in a fuel cell.

of one of the reactants approaches zero at the correspond-
ing catalyst layer. This defines the limiting reactant. In a
typical PEM cell operating at temperatures below 80 ◦C,
much of the water produced by the ORR is liquid, and this
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liquid water may flood parts of the fuel cell, dramatically
increasing the resistance to mass transfer.

A simplified equation[1] describing the major features of
a typical polarization curve is

V = U θ + RT

αF
ln(ai0L) − RT

αF
ln

(
i

pO2

)

+ RT

2F
ln(pH2

) − R′i (10)

where V is the cell potential and i is the superficial cur-
rent density. The first term in the equation, U θ, is the
standard cell potential, 1.144 V at 190 ◦C. The second and
third terms arise from the assumption that the ORR fol-
lows Tafel kinetics, with a first-order dependence on the
partial pressure of oxygen. α is the cathodic transfer coeffi-
cient, which normally has a value of 1, a is the interfacial
area of the catalyst per unit volume of electrode, i0 is the
exchange current density of the ORR, and L is the thick-
ness of the cathode catalyst layer. Thus, the quantity aL
is a roughness factor, a ratio of catalyst area to super-
ficial electrode area. The first and second terms may be
combined to form a potential intercept, U ′; this quantity
is a convenient way to group terms pertaining to (possi-
bly unknown) thermodynamic and kinetic constants. The
third term describes the potential loss at the cathode at the
specified current density i, and subject to the oxygen par-
tial pressure present at the electrode interface. The fourth
term is an equilibrium expression for the hydrogen oxida-
tion reaction (HOR). This is usually a good approximation
unless the anode catalyst is poisoned. Finally, R′ is the
effective ohmic resistance, which includes the resistance
of the separator as well as the residual contact resistances
between cell components. The detailed reaction rate dis-
tributions within the porous electrodes are neglected in
this analysis, and the electrodes are treated as planar with
enhanced surface area.

The use of equation (10) requires that interfacial partial
pressures of oxygen and hydrogen be known. These partial
pressures will be lower than those in the channels because
of mass transport losses in the backing layers. Conversely,
the partial pressure of water will be higher at the cathode
catalyst layer than in the cathode gas channel.

At sufficiently high utilizations near the exit of the anode
flow channel, hydrogen will be a minor component in the
anode fuel stream and, under these conditions, diffusion of
hydrogen through the stagnant inert gases in the diffusion
layer can be modeled with Fick’s law. If we define the
limiting current as the current density at which the hydrogen
partial pressure goes to zero at the anode catalyst layer, then

rearrangement of Fick’s law yields

xi
H2

= xb
H2

(
1 − i

ilim,H2

)
(11)

where xH2
is the mole fraction of hydrogen, and the super-

scripts i and b refer to the catalyst layer interface and bulk,
respectively. The hydrogen limiting current varies with uti-
lization according to

ilim,H2
= 2FDH2,CO2

X0
H2

p

RT δ

1 − u

1 + X0
H2

(1 − u)
(12)

where Di,j is the diffusion coefficient for species i moving
through species j , p is the total gas pressure, and δ is
the diffusion length. As a reference, using values given
by Newman,[1] the limiting current is 43.2 A cm−2 at zero
utilization and 1.69 A cm−2 at 98% utilization with an
equimolar feed of hydrogen and carbon dioxide.

In the cathode diffusion medium, oxygen diffuses through
stagnant nitrogen and counter diffusing water vapor. The
Stefan–Maxwell equations are appropriate for describing
this process. An analytic solution is possible for a three-
component system like that described here; see, for exam-
ple, Bird et al.[2]

Figure 4 shows polarization curves at various hydrogen
utilizations, using the parameters U ′ = 0.694 V and R′ =
0.278 � cm2. As the hydrogen utilization increases, the
partial pressure of hydrogen in the gas channel drops and
the effects of mass transfer resistance increase. As specified
in equation (9), and under the conditions of cocurrent
flow, oxygen utilization and, hence, oxygen mass transport
limitations, increase along with hydrogen utilization. The
limiting currents in figure 4 are caused by the oxygen
partial pressure going to zero at the cathode catalyst layer.
Thus, oxygen is the limiting reactant and the introduction
of additional oxygen should be considered.

Figure 5 shows the current density as a function of
hydrogen utilization at three different cell potentials. Again
we see that the performance of the cell decreases as the
partial pressures of the reactants drop. Since, during normal
operation, the cell potential remains uniform along the
flow channel, even as hydrogen and oxygen are being
consumed, Figure 5 also indicates how the local current
density decreases with position as the air and fuel flow
through the cell.

In the remainder of this chapter, we focus on transport
processes in the direction normal to the face of the elec-
trodes. Many of the key drivers of cell performance are
controlled by the motion of gases and ions across the thick-
ness of the cell, and a great deal of information about factors
limiting cell performance might be gleaned by modeling
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Figure 4. Polarization curves at hydrogen utilizations of 0, 0.5,
0.7, 0.9, and 0.98; calculated using the introductory model.

one-dimensional transport through the various layers. When
the resistance to transport across the cell is much greater
than the mass transport resistance along the channel, one
can decouple the two spatial dimensions and integrate down
the channel to determine the cell performance in a manner
similar to that set forth above.

2 POROUS ELECTRODES

Porous electrodes are used in fuel cells in order to maxi-
mize the interfacial area of the catalyst per unit geometric
area. In many fuel cells, an electrolytic species and a dis-
solved gas react on a supported catalyst. Thus, the electrode
must be designed to maximize the available catalytic area
while minimizing the resistances to mass transport in the
electrolytic and gas phases, and the electronic resistance in
the solid phase. Clearly, this is a stringent set of require-
ments. We want to construct a three-dimensional structure
with continuous transport paths in multiple phases. Porous
electrode theory provides a mathematical framework for
modeling these complex electrode structures in terms of
well defined macroscopic variables.

The behavior of porous electrodes is inherently more
complicated than that of planar electrodes because of the
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Figure 5. Current density across a cell at three constant cell
potentials as a function of hydrogen utilization; calculated using
the introductory model.

intimate contact between the solid and fluid phases. Reac-
tion rates can vary widely through the depth of the electrode
due to the interplay between the ohmic drop in the solid
phase, kinetic resistances, and concentration variations in
the fluid phases. The number and complexity of interactions
occurring make it difficult to develop analytic expressions
describing the behavior of porous electrodes except under
limiting conditions. Thus, the governing equations must
usually be solved numerically.

Porous electrode theory has been used to describe a vari-
ety of electrochemical devices including fuel cells, batteries,
separation devices, and electrochemical capacitors. In many
of these systems, the electrode contains a single solid phase
and a single fluid phase. Newman and Tiedemann reviewed
the behavior of these flooded porous electrodes.[3] Many
fuel cell electrodes, however, contain more than one fluid
phase, which introduces additional complications. The clas-
sical gas diffusion electrode, for example, contains both
an electrolytic phase and a gas phase in addition to the
solid, electronically conducting phase. Earlier reviews of
gas diffusion electrodes for fuel cells include those of
Chizmadzhev et al.[4] and Bockris and Srinivasan.[5] This
section deals with general aspects of macroscopic porous
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electrode theory and does not delve into detailed reac-
tion mechanisms and electrode morphology. These issues
should, of course, be considered when constructing a model
of a particular system.

2.1 Macroscopic approach

We follow the macroscopic approach for modeling porous
electrodes as described by Newman and Tiedemann.[3] In
the macroscopic approach, the exact geometric details of the
electrode are neglected. Instead, the electrode is treated as
a randomly arranged porous structure that can be described
by a small number of variables such as porosity and surface
area per unit volume. Furthermore, transport properties
within the porous structure are averaged over the electrode
volume. Averaging is performed over a region that is small
compared to the size of the electrode, but large compared to
the pore structure. A detailed description of the averaging
can be found in Dunning’s dissertation.[6] The macroscopic
approach to modeling can be contrasted to models based on
a geometric description of the pore structure. Many early
models of flooded porous electrodes treated the pores as
straight cylinders arranged perpendicular to the external
face of the electrode. Further examples of this type of
approach are the flooded agglomerate models of Giner and
Hunter[7] and Iczkowski and Cutlip.[8] These models are
frequently used to describe fuel cells, and treat the electrode
as a collection of flooded catalyst-containing agglomerates,
which are small compared to the size of the electrode and
are connected by hydrophobic gas pores.

2.2 Declaration of variables

A useful place to begin the formulation of the model is
to determine the number of independent variables. The first
consideration is the number of phases present. For example,
consider the catalyst layer in a state of the art PEM fuel cell
containing a supported platinum-on-carbon (or platinum-
alloy-on-carbon) catalyst, a polymeric membrane material,
and a void volume. For reference, the primary carbon
particles are approximately 40 nm in diameter,[9] and the
platinum crystallites are approximately 2 nm in diameter.[10]

If we lump the solid phases comprising the supported cata-
lyst together, and treat the polymeric membrane as a single
phase, then we end up with four phases: solid, membrane,
gas, and liquid. This last phase corresponds to liquid water
infiltrating the gas pores. This model differs, conceptu-
ally, from those of Bernardi and Verbrugge[11] and Springer
et al.[12] by explicitly accounting for a void volume con-
taining gas and liquid water. In Bernardi and Verbrugge’s

model, oxygen and hydrogen within the catalyst layer travel
as dissolved species within the ionomer. Springer et al. pro-
pose a similar picture, but fit the permeability of the catalyst
layer to experimental data. The basic mathematics of the
different models are fundamentally similar, a strength of
the macroscopic approach. Each phase is assumed to be
electrically neutral, an idea that we will return to later.
We neglect double layer processes in this chapter, although
these may be important in the simulation of transient phe-
nomena. If desired, it is possible to include the interfacial
regions between the different macroscopic phases as addi-
tional phases with negligible volume, but having the ability
to store mass.[13]

Now we turn our attention to the number, M , of degrees
of freedom that need to be specified. The Gibbs phase
rule allows the reduction of an arbitrarily large number of
species to a set of independent components of size M

M = C − R − P + 2 (13)

where C is the number of species, R is the number of
equilibrated homogeneous reactions, P is the number of
phases, and the 2 indicates the selection of temperature
and pressure. If we have unequilibrated reactions, they
would not contribute to R, and if we do not assume
phase equilibrium (treating mass transfer separately), we
would treat each phase separately, taking P = 1. If we
also treat pressure and temperature separately, say, by fluid
mechanics and an energy balance, we would leave off the 2,
yielding C − R − 1. For a gas phase of three components
and no equilibrated reactions, C − R − 1 = 2; specify two
mole fractions. In phases without charged species, like the
gas phase in our PEM example, we do not need an electrical
state variable.

As a second example, consider a sulfuric acid electrolyte
containing H+, HSO4

−, SO4
2−, H2SO4, and H2O. In this

case, C = 5 and R = 2, which yields N = 2, interpreted
to mean the electric potential and the concentration of sul-
furic acid. R = 2 implies that we have two equilibrium
relationships among the 5 species, one for bisulfate equi-
librium and one for sulfuric acid equilibrium. For Nafion,
we have water, membrane, and protons, C = 3. Now,
C − R − 1 = 3 − 0 − 1 = 2; specify water concentration
and potential. This approach allows the electrical systems
to be handled without exception, by turning that last degree
of freedom into an electric state variable, namely, the
potential.

In all of these systems, the corresponding number of
transport properties required is

N(N − 1)

2
(14)
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where N is the number of independent species. Newman[14]

gives a more complete counting of transport properties, with
simple examples, including thermal and electrical variables.

2.3 Average quantities

In the macroscopic approach, the electrode is treated as a
superposition of all phases present. Thus, all variables are
defined at all positions within the electrode. The concentra-
tion of species i in phase k, ci,k, is averaged over the pore
volume of phase k, ensuring that the concentration profile
is continuous entering or leaving the electrode. Ni,k is the
superficial flux density of species i in the pores of phase
k averaged over the cross-sectional area of the electrode.
These averages apply to regions that are large compared
to the pore structure, but small compared to regions over
which macroscopic variations occur. The interstitial flux
density of species i in phase k is

Ninterstitial
i,k = Ni,k

εk

(15)

where εk is the volume fraction of phase k. This equa-
tion assumes that the medium is isotropic. The superficial
current density in phase k is

ik = F
∑

i

ziNi,k (16)

where F is Faraday’s constant and zi is the valence of
species i.

2.4 Ohm’s law in the solid phase

In many fuel cell systems, the conductivity of the solid
phase is much greater than the conductivity of the elec-
trolytic phase. In this case, it is permissible to treat the
solid phase potential as a constant. More generally, the
transport of current in the solid phase may be treated with
Ohm’s law:

i1 = −σ∇�1 (17)

where σ is the electrical conductivity of the solid. This
conductivity may be adjusted for porosity and tortuosity
with a Bruggeman[15] correction

σ = σ0ε
1.5
1 (18)

where ε1 and σ0 are the volume fraction and the bulk
conductivity of the solid phase, respectively. The con-
ductivity will take on some effective value based on the

conductivities of the different solid phase materials. For
example, many PEM electrodes contain carbon, platinum,
and Teflon (polytetrafluoroethylene) with bulk conductiv-
ities of approximately 25, 105, and 10−4 S cm−1 at 25 ◦C,
respectively.[16] The electronic current will flow through the
platinum and carbon phases, and the carbon will effectively
determine the conductivity. Bernardi[17] discusses the aver-
aging of the conductivities of electronically conducting
phases in a porous electrode. She advocates Maxwell’s
model, which assumes a continuous phase and several dis-
crete phases. However, the prediction of conductivities of
packed bed materials is not fully resolved; thus, experimen-
tal values are preferred when available.

2.5 Electrode kinetics

A single electrochemical reaction can be written schemati-
cally as ∑

k

∑
i

si,k,hM
zi

i −−−→ nhe
− (19)

where si,k,h is the stoichiometric coefficient of species i,
residing in phase k, and participating in electron transfer
reaction h, nh is the number of electrons transferred in
reaction h, and M

zi

i represents the chemical formula of i

having valence zi . The electrons reside in the solid phase.
The rate of an electrochemical reaction depends upon

the potential drop across the interface and the concentra-
tions of the various species. It is not possible to write down
completely general rate equations for electrochemical reac-
tions. However, it is frequently possible to begin with a
Butler–Volmer equation.

Two electrochemical reactions of particular interest in
fuel cells are the HOR and the ORR. In the absence of
catalyst poisons, the HOR is fast, and a detailed reaction
mechanism may be unnecessary. Instead, we use a But-
ler–Volmer equation of the form

i = i0

[
pH2

pref
H2

exp
(

(1 − β)nF

RT
(�1 − �2)

)

− exp
(

βnF

RT
(�1 − �2)

) ]
(20)

where i0 is the exchange current density per unit catalyst
area evaluated at the reference conditions, n = 2 is the
number of electrons transferred, β is a symmetry factor
having a typical value of 0.5, pH2

is the hydrogen partial
pressure, pref

H2
is the hydrogen partial pressure at which the

exchange current density is specified, typically 1 bar, �1 is
the potential in the solid phase, and �2 is the potential in the
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proton conducting phase. In this discussion, the potential in
the proton conducting phase is measured with a normal
hydrogen electrode (NHE), defined as a platinum metal
electrode exposed to hydrogen at 1 bar and a solution of
1 N acid, measured at the same temperature as the solution
of interest. This kinetic expression reduces to the Nernst
relationship when the ratio i/i0 becomes small. Springer
et al.[18] present a treatment of the HOR applicable to a
platinum catalyst in a PEM fuel cell when carbon monoxide
poisoning of the electrode is significant. This treatment
involves consideration of the Tafel and Volmer reaction
steps.

The ORR, on the other hand, is slow and represents the
principal inefficiency in many fuel cells. The ORR behaves
irreversibly and may be modeled reasonably well with
Tafel kinetics with a first-order dependence upon oxygen
partial pressure. Appleby[19] suggests the following form
for oxygen reduction in acid electrolytes

in = −i0

(
pO2

pref
O2

)
exp

(−αF

RT
(�1 − �2 − U θ)

)
(21)

where pO2
is the oxygen partial pressure, i0 is the exchange

current density, α is the cathodic transfer coefficient, for
which Appleby recommends a value of 1, and U θ is the
standard potential for oxygen reduction, 1.229 V at 25 ◦C.
A linear fit on a Tafel plot of surface overpotential, ηs =
�1 − �2 − U θ, versus the log of the current density yields
the commonly reported Tafel slope, b

b = 2.303
RT

αF
(22)

Equation (21) is first order in oxygen concentration
and applies for acid electrolytes; another form is required
for basic electrolytes. Additionally, the rate of the ORR
may depend upon proton concentration; see, for exam-
ple, Kinoshita.[20] Furthermore, the ORR is sensitive to
the presence of adsorbed anions and surface oxides on
platinum. Finally, one may prefer to use the dissolved oxy-
gen concentration in equation (21) instead of the oxygen
partial pressure. Typically, these can be related through
Henry’s law.

Further refinement of the kinetic expressions may be
necessary to describe the effects of competitively adsorbed
poisons or unwanted by-products. It is usually possible to
incorporate such effects into a general numerical model.

2.6 Material balances

Reactions occurring within the porous electrode are math-
ematically treated as source or sink terms, rather than as

boundary conditions, as reactions at a planar electrode
might be treated. It is necessary to write a material balance
for each independent component in each phase. In the fol-
lowing discussion, we assume that there is only one solid,
electronically conducting phase, denoted by subscript 1.
The differential form of the material balance for species
i in phase k is

∂εkci,k

∂t
= −∇ · Ni,k −

∑
h

ak,1si,k,h

ih,k

nhF

+
∑

l

si,k,l

∑
p �=k

ak,prl,k−p +
∑

g

si,k,gRg,k (23)

The term on the left side of the equation is the accumulation
term, which accounts for the change in the total amount
of species i held in phase k within a differential control
volume. The first term on the right side of the equation
keeps track of the material that enters or leaves the con-
trol volume by mass transport. The remaining three terms
account for material that is gained or lost due to chemical
reactions. The first summation includes all electron trans-
fer reactions that occur at the interface between phase k

and the solid, electronically conducting phase. The second
summation accounts for all other interfacial reactions that
do not include electron transfer, and the final term accounts
for homogeneous reactions in phase k.

In the above expression, ci,k is the concentration of
species i in phase k, and si,k,l is the stoichiometric coeffi-
cient of species i in phase k participating in heterogeneous
reaction l. When we specify si,k,l , we necessarily assume
that species i exists in phase k immediately prior to reaction
or upon formation. If i can exist in more than one phase,
care must be taken to ensure that phase equilibrium is prop-
erly addressed. ak,p is the specific surface area (surface area
per unit total volume) of the interface between phases k and
p. We assume that this is a nonspecific surface area for the
interface; for example, if only a particular crystalline sur-
face participates in an interfacial reaction, the portion of
the total surface area covered by that particular crystal face
must be included in the kinetic rate constants, rather than
grouped into the ak,p term. This simplifies the terminology
of this discussion considerably. ih,k is the normal anodic
interfacial current transferred per unit interfacial area across
the interface between the solid, electronically conducting
phase and phase k due to electron transfer reaction h. We
note that a current ih,k , written with two subscripts, implies
an interfacial, or transfer, current density. Conversely, a
current ik , written in boldface and with a single subscript,
indicates the total current density carried within phase k.
This current density is, strictly speaking, a vector quantity.
rl,k−p is the rate of the heterogeneous reaction l per unit of
interfacial area between phases k and p. Rg,k is the rate of a
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strictly homogenous reaction g in phase k per unit volume
of phase k.

The electron transfer reactions could also be treated as
simple interfacial reactions taking place between a given
phase and the solid. Faraday’s law can be used to relate
this reaction rate to the normal transfer current density for
reaction h

ih,k = nhF rh,k−1 (24)

where rh,k−1 is the rate of reaction h occurring at the
interface between phase k and the solid, electronically
conducting phase and ih,k is, as described above, the normal
interfacial current density flowing to phase k from the solid
phase due to an anodic reaction h.

2.7 Electroneutrality and conservation of charge

Since a large electrical force is required to separate charge
over an appreciable distance, a volume element in the
electrode will, to a good approximation, be electrically
neutral. We further assume that each phase within the
electrode is electrically neutral. Thus, for each phase

∑
i

zici,k = 0 (25)

The assumption of electroneutrality implies that the diffuse
double layer, where there is significant charge separation,
is small compared to the volume of the electrode, which is
normally the case. The assumption of electroneutrality also
leads us to the conclusion that the divergence of the total
current is zero ∑

k

∇ · ik = 0 (26)

Using the subscript 1 to again denote the solid, elec-
tronically conductive, phase, we may relate the divergence
of the electronic current to the rates of the electrochemi-
cal reactions. In other words, −∇ · i1 represents the total
anodic rate of electrochemical reactions per unit volume of
electrode. This can be related to the average transfer current
density, and when combined with equation (24), yields

−∇ · i1 =
∑

k

∑
h

ak,1ih,k (27)

The above charge balance assumes that faradaic reactions
are the only electrode processes; double layer charging is
neglected.

3 GAS PHASE TRANSPORT

The gaseous reactants enter the fuel cell through the gas
channels and are transported through the diffusion media
into the catalyst layers where they react. Some gases may
dissolve into the membrane and leak across the cell to react
at the opposite electrode, thereby reducing the electrical
work delivered by the fuel cell. The transport of the gases
across the membrane is discussed later; here, only true gas
phase mass transport is considered. Thus, the regions of
interest are the diffusion media and the catalyst layers. Gas
phase mass transport limitations may become important at
the anode, the cathode, or both. These limitations could
have severe effects on the operation of the fuel cell, as was
shown with the introductory model.

Diffusion describes the movement of a given species
relative to the motion of other species in a mixture. Sev-
eral important modes of diffusion are ordinary (molecu-
lar), Knudsen, configurational, and surface diffusion. Ordi-
nary diffusion almost always occurs; Knudsen diffusion is
important in small pores; configurational diffusion takes
place when the characteristic pore size is on the molec-
ular scale; and surface diffusion involves the movement of
adsorbates on surfaces. In a typical fuel cell, the pores are
large enough that configurational diffusion does not occur.
Surface diffusion may play an important role in interfacial
reactions, but it is not treated in this chapter.

3.1 Ordinary diffusion

Fick’s law may be used to describe the molecular movement
of a dilute component in a mixture

Ni

ε
= −DicT∇xi (28)

where Ni is the superficial flux density of species i, ε is the
porosity, Di is the Fickian diffusion coefficient of species i

in the mixture, which varies inversely with pressure and to
approximately the 1.81 power with absolute temperature,[2]

and cT is the total concentration or molar density, which
is assumed constant. Since we are discussing single phase
phenomena, we have dropped the subscript k identify-
ing the phase in the above and subsequent equations. In
more concentrated and multicomponent systems, where it
is necessary to take into account mutual interactions among
different species, the generalized Stefan–Maxwell equa-
tions for constant temperature and pressure are appropriate

ci∇µi = RT

cT

∑
j �=i

cicj

Di,j

(vj − vi ) (29)
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where ci is the concentration of i, µi is the chemical
potential of i, Di,j is the binary interaction parameter
between i and j , and vi is the interstitial velocity of i

relative to some reference velocity. As long as the reference
frame is applied consistently, it need not be specified. The
reason for this is that the frictional interactions depend only
the relative and not the absolute values of the velocities.
These equations involve only binary interaction parameters,
and yield the correct number of transport coefficients as
determined by species analysis.

Using the relationship between flux density and velocity

Ni

ε
= civi (30)

equation (29) can be rewritten, and for ideal mixtures at
constant pressure and temperature, the Stefan–Maxwell
equations take the form

∇xi =
∑
j �=i

xiNj − xj Ni

εcTDi,j

(31)

where xi is the mole fraction of i. By the Onsager reciprocal
relationships or by Newton’s third law of motion, Di,j =
Dj,i . Bird et al.[2] provide correlations of Di,j for various
gas pairs. Since the transport is occurring in pores, the
diffusion coefficients need to be corrected for tortuosity.
Frequently, a Bruggeman[15] equation can be used for this
correction

τ = ε−0.5 (32)

The diffusion coefficients do not need to be corrected
for porosity since it was explicitly accounted for by using
interstitial properties and superficial fluxes.

The above set of equations yields N − 1 independent
equations. In addition to determining the velocities of
species relative to one another, the reference velocity must
be determined, either by fluid dynamics or by the fixing the
movement of a particular species with a properly chosen
reference frame.

3.2 Knudsen diffusion

As the pore size decreases, molecules collide more often
with the pore walls than with each other. This movement,
intermediated by these molecule-pore-wall interactions, is
known as Knudsen diffusion, named after the first person
to study this type of flow comprehensively.[21] Knudsen
diffusion occurs when the mean free path of the molecule
is on the same order as the diameter of the pore. Using the
kinetic theory of gases to express the mean free path of the
molecule, the Knudsen diffusion coefficient is given by

DKi
= d

3

(
8RT

πMi

)1/2

(33)

where d is the pore diameter and Mi is the molecular
weight of i. This diffusion coefficient is independent of
pressure whereas ordinary diffusion coefficients have an
inverse dependence on pressure.

Knudsen diffusion and ordinary or Stefan–Maxwell dif-
fusion may be treated as mass transport resistances in series,
and combined to yield

∇xi = − Ni

εcTDe
Ki

+
∑
j �=i

xiNj − xj Ni

εcTDe
i,j

(34)

where the superscript e indicates that the diffusion coeffi-
cients have been corrected for tortuosity. In effect, the pore
wall, with zero velocity, constitutes another species with
which the diffusing species interact, and it determines the
reference velocity used for diffusion. From an order of mag-
nitude analysis, when the mean free path of a molecule is
less than 0.01 times the pore diameter, bulk diffusion domi-
nates, and when it is greater than 10 times the pore diameter,
Knudsen diffusion dominates. This means that Knudsen dif-
fusion should be considered when the pore diameter is less
than 100 nm at atmospheric conditions. For reference, a typ-
ical carbon diffusion medium has pores between 100 nm
and 20 µm[22] in diameter and a catalyst layer contains pores
on the order of 50 nm in diameter.[9]

3.3 Pressure driven flow

In most porous systems, the full Navier–Stokes equa-
tions are not solved; instead, a simplified construct is
used. The reason for this simplification is that the actual
porous structure is often unknown and a volume aver-
age approach is taken. This averaging is not valid over a
bimodal distribution.[23] The convective flow encountered
in a fuel cell is mainly pressure driven. If we further assume
that the flow is steady and laminar (i.e., creeping flow), then
we may use Darcy’s law

v = − k

µ
∇p (35)

where v is the superficial mass average velocity, µ is the
viscosity, and k is the permeability coefficient or Darcy’s
constant. The permeability coefficient is best determined
from experiment, but should be on the order of the recipro-
cal of the square of the pore diameter. The Carman–Kozeny
equation may be used to estimate the permeability[23]

k = ε3

(1 − ε)2k′S2
o

(36)
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where So is a shape factor defined as the surface area
to volume ratio of the solid phase and k′ is the Kozeny
constant, which has a value of approximately 5. If desired,
equation (35) can be written as a flux in the absence of
diffusion by using equation (30).

3.4 Combined transport

The inclusion of Knudsen diffusion coefficients is anal-
ogous to imposing a frictional interaction between each
species in the gas mixture and the pore wall. When the
characteristic pore diameter is small enough that the fric-
tional interactions between gas species and pore wall are
of the same order as, or larger than, the Stefan–Maxwell
frictional interactions, then the reference velocity, which
is necessary to specify the absolute velocities of all the
species in the mixture, is set by fixing the velocity of the
solid pore wall in the laboratory reference frame. In such
a case, the inclusion of the Knudsen diffusion coefficients
is mathematically similar to including a species N + 1 to
represent the static pore wall in an N -component gas mix-
ture. As mentioned above, the matrix of Stefan–Maxwell
equations is not linearly independent, so one row must be
removed and replaced with the specification of the reference
velocity. In the case where Knudsen diffusion coefficients
interact significantly with the remaining gas phase species,
the reference velocity is that of the pore wall.

As the pore diameter becomes larger, however, the fric-
tional interactions between the solid pore wall and the
diffusing gas species become weaker and the coupling
between them tenuous. In this case, the pore wall ceases to
interact significantly with the diffusing gas species, and the
interactions become too weak for the pore wall to specify
the reference velocity. In such a case, one must resort to the
original N × N matrix of Stefan–Maxwell relations, which
becomes, in the absence of significant frictional interactions
between the species and the pore wall, a singular matrix.
In such a case, a single row of the matrix of equations is
removed in order to specify a different reference velocity,
namely, the mass average velocity of the gas mixture given
by Darcy’s law. The inclusion of Knudsen diffusion and
bulk flow in the Stefan–Maxwell framework is discussed
at great length by Mason and Malinauskas.[24]

4 LIQUID PHASE TRANSPORT

The transport of liquid water is an important consideration
in the design of fuel cells intended to operate below
100 ◦C.[25] In a PEM fuel cell, for example, water may
be transported as both a liquid and a gas. In general,

the exchange between the two may be given by a kinetic
expression for the evaporation rate. However, equilibrium
between the pure liquid and the water vapor can often be
assumed

xH2O = pvap

p
(37)

where xH2O is the mole fraction of water in the vapor phase
and pvap is the vapor pressure of water, a strong function
of temperature. Additionally, if the pores are small, it may
be necessary to apply the Kelvin equation to correct the
activity of water for curvature effects.[23]

Darcy’s law, using the gradient of the liquid pressure as
the driving force, may be used to describe the bulk trans-
port of liquid water in the gas diffusion media and catalyst
layers. These media are typically unsaturated, introducing
an additional complication because the permeability is typ-
ically a strong function of the saturation level. Frequently,
a power law relationship holds between permeability and
the saturation level[23]

k = ksatS
m (38)

where ksat is the permeability at complete saturation, S

is the saturation level, and the exponent m usually has
a value of approximately 3. The saturation is defined as
the fraction of the pore volume filled with liquid. When a
measured value for ksat is unavailable, the Carman–Kozeny
equation can be used to make an estimate. The saturation
is often related through porosimetry data to the capillary
pressure, pc, which is defined as the liquid pressure minus
the gas pressure. The capillary pressure is related to the
pore diameter by[23]

pc = −4σ cos θ

d
(39)

where σ is the surface tension, d is the pore diameter, and θ

is the contact angle, which is related to the hydrophobicity
of the pore.

5 ELECTROLYTIC AND MEMBRANE
PHASE TRANSPORT

To model the behavior of a PEM fuel cell system, the trans-
port of protons across the membrane must be described. It is
the movement of protons that carries current and thus per-
mits fuel cell operation. In order to relate current density
to potential drop across the membrane, the flux of charged
species resulting from a potential gradient in an electrolytic
solution has to be expressed. In this section, we examine
the frameworks of dilute solution theory and concentrated
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solution theory, and examine the limitations of each. The
complications of water transport due to electroosmotic drag
are specifically considered, and the challenges of describ-
ing pressure driven flow in a solid polymer electrolyte are
discussed.

5.1 Dilute solution theory

The simplest way to describe the movement of charged
species in an electrolytic medium is by dilute solution the-
ory. In dilute solution theory, one considers an uncharged
solvent, charged solute species, and (perhaps) uncharged
minor components. The superficial flux density of each dis-
solved species in terms of its interstitial concentration is
given by:

Ni

ε
= −ziu

e
i F ci∇� − (De

i + Da)∇ci + civ
ε

(40)

where Ni is the superficial flux density of species i. The
first term in the expression is a migration term, representing
the motion of charged species that results from a potential
gradient. The migration flux is related to the potential
gradient (−∇�) by the charge number of the species zi ,
its concentration ci , and the tortuosity corrected mobility
of the species ue

i . The second term relates the diffusive
flux to the concentration gradient and the Fickian diffusion
coefficient De

i , which has been corrected for tortuosity. Da
is a dispersion coefficient representing the effect of axial
dispersion. Strictly speaking, it is not a transport property
and depends on fluid flow parameters; it disappears when
convection is absent. Dispersion is usually ignored due to
the relatively low velocities found in fuel cells. The final
term is a convective term and represents the motion of the
species as the bulk motion of the solvent carries it along.
In general, the velocity of the solvent, v, is determined by
mass and momentum balances, e.g., by the Navier–Stokes
equation. But as discussed above, in a porous network it is
often easier to use Darcy’s law.

Dilute solution theory considers only the interactions
between each dissolved species and the solvent. The motion
of each species is described by its transport properties,
namely, the mobility and the diffusion coefficient. These
transport properties can be related to one another at infinite
dilution via the Nernst–Einstein equation:

Di = RT ui (41)

So long as the solute species are sufficiently dilute that
the interactions among them can be neglected, material
balances can be written based upon the above expression
for the flux, and the concentration and potential profiles in

the electrolyte can be determined. Neglecting dispersion,
and using equation (41) and the definition of the current

i = F
∑

i

ziNi (16)

equation (40) can be rewritten as a modified version of
Ohm’s law

i = −κ∇� − F
∑

ziD
e
i ∇ci (42)

where κ is the conductivity, defined as

κ = F 2
∑

i

z2
i u

e
i ci = F 2

RT

∑
i

z2
i D

e
i ci (43)

The velocity does not appear in equation (42) due to
electroneutrality, or, in other words, the bulk motion of a
fluid with no charge density can contribute nothing to the
current density.

5.2 Electroneutrality in the membrane

In PEM systems, in general, there is only one cation and
one anion, the dissociated proton and the sulfonic acid
site. The acid site is bound to the membrane, as seen in
Figure 6 for the case of Nafion. The sulfonic acid sites are
distributed more or less evenly throughout the membrane,
and, because the dissociation of the sulfonic acid groups
is nearly complete in the presence of water, it is safe
to assume that the charged acid sites are also distributed
evenly throughout the membrane in the presence of water.
Electroneutrality holds across the membrane

∑
i

zici = 0 (25)
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Figure 6. Schematic diagram of the structure of Nafion. The
value of z may be as low as 1, and the value of m ranges between
6 and 13.
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except for a very thin double layer region near electrodes
and other interfaces. Combining this equation with the
requirement that the concentration of the anions be uniform
across the membrane, it can be shown that the concentration
of mobile protons is also fixed. In such a system, then, there
will only be a migration and a convection term to describe
the flux of other species, as is the case in a PEM based fuel
cell system. If the details of the water concentration profiles
and fluxes can be neglected in a well hydrated PEM fuel
cell, Ohm’s law can be used to relate the current density to
the potential gradient in the membrane. Amphlett et al.[26]

describe the performance of a fuel cell in this manner.

5.3 Water transport in the membrane

The framework of dilute solution theory allows for just two
transport properties in a system composed of acid sites,
protons, and water. If a model is to describe migration of
protons, convective transport of water across the membrane,
and electroosmotic drag, there must be a third parameter
to quantify the fluxes. Furthermore, in most electrolytic
systems, anions and cations move relative to a solvent
whose velocity is determined by fluid dynamics. In the PEM
fuel cell system, the anion sites are fixed, and the cations
and water move relative to those sites. This peculiarity
of having fixed acid sites changes the reference frame
for transport in a PEM. Protons, water, and other minor
species move relative to a fixed polymer framework, rather
than all species moving relative to the convection of an
aqueous solvent. The requirement that the anion species
remain fixed in space is a key issue in describing transport
in the membrane, and it results in the inclusion of the
electrokinetic driving force.

Bernardi and Verbrugge[11, 27] use dilute solution theory
to describe transport in the PEM system, for a system
composed of a membrane, catalyst layer, and gas diffu-
sion medium. The motion of the protons is related to the
potential gradient and to the motion of the water in the
membrane; the movement of the water is specified by pres-
sure drop and electroosmotic drag:

vH2O = −
(

kp

µ

)
∇pL −

(
k�

µ

)
zfcfF∇� (44)

where kp and k� are the hydraulic permeability and the
electrokinetic permeability, respectively, pL is the hydraulic
or liquid pressure, and zf and cf refer to the charge and
concentration of fixed ionic sites, respectively.

The movement of water with the passing of current, even
in the absence of a gradient of pressure or water activity, is
known as electroosmotic drag and is an important factor in
the design of fuel cell systems. Proper water management

is critical for fuel cell operation (too much water leads
to flooding at the cathode; too little water dries out the
membrane and increases ohmic losses), so understanding
the details of water transport is critical. Measurements of
electroosmotic drag coefficients indicate that, near satura-
tion, anywhere from 1 to 2.5 water molecules are dragged
across the membrane with each proton.[28, 29] Electroos-
motic drag delivers considerably more water to the cathode
than stoichiometry dictates would be generated through the
reduction of oxygen alone.

It is interesting to calculate the hydraulic pressure differ-
ence that, according to the above model, must be applied
across the membrane to balance the electroosmotic drag
with convection, and yield zero net water flux. When the
net water flux is zero, the current density obeys Ohm’s law.
Combining this fact with equation (44) and assuming con-
stant physical properties leads to the following expression:

�pL = k�zfcfFLi

kpκm

(45)

Thus, the required pressure difference is proportional to
the current density and the thickness of the membrane,
while it is inversely proportional to the conductivity of the
membrane. In order to improve water management, it is
common to operate with a higher pressure at the cathode
than the anode.

5.4 Electrokinetic phenomena

There have been two principal approaches to describing the
motion of water relative to the fixed polymer; the first is
by the consideration of electrokinetic phenomena, and the
second is the treatment of water as a dissolved species in
the membrane. The treatment of electrokinetic phenomena,
as Pintauro, Verbrugge, and others have adopted,[30, 31] is
to describe the membrane as a series of pores with charged
walls, through which liquid water filled with positively
charged protons is allowed to move. The movement of the
protons with the passing of current tends to drag water along
with it, via the frictional interactions between the protons
and the associated water. This approach presupposes that
all the water in the membrane behaves as a fluid, and that
there is a contiguous pore network that allows water to be
transported from one side of the membrane to the other. In
such a system, the movement of protons can be attributed to
a potential gradient and a pressure gradient. The movement
of water is determined primarily by a permeability of water
subject to a pressure gradient, moving through the pore
network. This approach is quite useful for describing fuel
cell systems where the membrane is very well hydrated,
but it requires that the water content be uniform across the
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membrane, with only a pressure gradient as a driving force
for water movement. Such a treatment does not necessarily
lend itself to describing the flux of water resulting when
there is a water activity gradient across the membrane.

The second approach, which treats all of the species as
solute species absorbed in a single membrane phase, allows
for a concentration gradient of water across the membrane.
Thus, it can deal with issues of incomplete humidification of
the membrane. The difficulty with this approach, however,
is related to the details of pressure driven flow, which will
be discussed later. The intricacies of Schroeder’s paradox,
namely, that the membrane takes up different equilibrium
amounts of water when exposed to liquid water and to
steam, complicate the picture even further.

5.5 Concentrated solution theory

Under the rules of concentrated solution theory, the frame-
work for describing the transport of species is altered
slightly from dilute solution theory. Instead of describ-
ing only the interactions between each solute species and
the prescribed solvent, concentrated solution theory also
describes the interactions of the species with each other;
hence, it is more generally valid, especially for nonideal
systems. In concentrated solution theory, a force balance
is written that equates a thermodynamic driving force to a
sum of frictional interactions. At constant temperature and
pressure, the driving force is the gradient of electrochemi-
cal potential, and the frictional interactions are specified by
the motion of the species relative to one another:

ci∇µi = RT

cT

∑
j �=i

cicj

De
i,j

(vj − vi ). (46)

Here the Di,j term is a binary diffusion coefficient spec-
ifying the frictional interaction between species i and j .
This equation is just a restatement of the generalized Ste-
fan–Maxwell diffusion equation except now µi represents
the electrochemical instead of chemical potential. Further-
more, as with Stefan–Maxwell diffusion, it may be nec-
essary to choose explicitly a reference velocity, whether
it is the velocity of a particular species, the mass aver-
age velocity, or the volume average velocity. For mass
transport in the membrane, the membrane velocity is often
used. The presence of a high molecular weight polymer
is allowable under the Stefan–Maxwell framework. The
diffusion coefficients are determined from experimental
measurements. An appropriate choice of concentration scale
is necessary to interpret the measurements and assign val-
ues to the diffusion coefficients; as long as the assumptions
about the molecular weight of the polymer are applied

consistently to both data analysis and system modeling, the
framework will hold.

In a multicomponent system composed of N species,
there are N (N − 1)/2 independent transport properties. For
a system composed only of protons, acid sites, and water,
the framework of concentrated solution theory specifies
three transport properties: the membrane-proton binary dif-
fusion coefficient, the water-proton binary diffusion coeffi-
cient, and the water-membrane binary diffusion coefficient.
These three coefficients can be arranged to yield the ionic
conductivity of the membrane, the electroosmotic drag
coefficient of water, and the diffusion coefficient of water
in the membrane.

Concentrated solution theory has been used to describe
transport in fuel cell membranes.[12, 32] By careful inversion
of the Stefan–Maxwell equations in special cases (e.g., in
the absence of current or in the absence of a water activity
gradient) Di,j can be related to measurable transport prop-
erties; namely, DH2O, the diffusion coefficient of water; κ,
the ionic conductivity; and ξ, the electroosmotic drag coef-
ficient, which is the number of water molecules carried
across the membrane with each hydrogen ion in the absence
of a water activity gradient. Re-casting the Stefan–Maxwell
equations in terms of these properties, we find[33]

i = −κξ

F
∇µH2O − κ∇� (47)

NH2O = −
(
DH2O + κξ2

F 2

)
∇µH2O − κξ

F
∇� (48)

The multicomponent diffusion equation may be combined
with the material balance equations and the condition of
electroneutrality to provide a consistent description of trans-
port processes in concentrated electrolytic systems.

5.6 Pressure driven flow in the membrane

In order to describe the effect of a pressure gradient
on the transport of species in a membrane, it has been
proposed that the electrochemical potential gradient be
replaced with a more generalized driving force, suggested
by Hirschfelder, Curtiss, and Bird[34]

di = ci


∇µi + Si∇T − Mi

ρ
∇p − Xi + Mi

ρ

∑
j

Xj cj



(49)

where di is the driving force per unit volume acting on
species i, Mi is the molecular weight of species i, Si is
the molar entropy of species i, ρ is the density of the
solution, and the Xi terms refer to body forces per mole
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acting on species i. Bennion[35] applies this treatment to
a membrane by requiring that the stresses acting on the
membrane constitute the external body force Xi , a force that
is absent for the solid species. If there is only a single body
force acting, then a mechanical force balance requires that

cmXm = ∇p (50)

This relationship allows one to simplify the above driving
force for a membrane.

In general, for a species containing N solute species,
there are N + 3 variables that must be determined: N

compositional variables, the potential (�), the temperature,
and the pressure. Either by the energy balance or by
the requirement of isothermal conditions, the temperature
profile can be determine, and N material balances, then,
will allow for the concentration profiles to be solved.
The requirement of electroneutrality provides an additional
equation for the potential. Thus, there is required one
additional equation to determine the pressure drop.

In Pintauro and Bennion’s[36] development, they back off
from this framework and, in a treatment of desalinization,
consider a membrane equilibrated with liquid water and
exposed to NaCl solutions. They write a matrix that relates
fluxes of water, current, and NaCl salt to driving forces in
pressure, electrolyte concentration, and potential. Assuming
uniform water content, they solve for the relevant variables
by material balances on water and salt concentration, and by
electroneutrality. The implicit assumption of uniform water
content also forces them to consider the membrane as a
separate phase, thereby allowing the Gibbs-Duhem equation
to specify the chemical potential of the water, rather than
allowing for an additional degree of freedom.

Meyers[37] addresses the problem from a slightly differ-
ent perspective. He assumes that the water and ion content
of the membrane is all part of a single, homogeneous
phase. He argues that in a single phase system, a pres-
sure gradient cannot be supported because there is nothing
to withstand the force; a pressure gradient should impose
net movement of the membrane itself. He treats pressure
driven flow by allowing for a discontinuity in pressure at
the membrane/solution interface, and argues that additional
mechanical stresses compressing the membrane should be
indistinguishable from the thermodynamic pressure. In his
treatment, the thermodynamic pressure might be discontin-
uous, as the total force acting on the membrane consists of a
liquid solute pressure combined with the mechanical stress
of the solid structures (gas diffusion media, flow fields,
etc.) that support the membrane. Equilibrium is imposed on
all soluble species by requiring equality of electrochemical
potential of all soluble species at the membrane/solution
interfaces.

Since the PEM in a fuel cell is not always saturated
with water, the uptake of water at lower activities needs
to be considered. If, as seems likely, acid sites do not
induce condensation of bulk-like water in the pores over
the entire range of water activities that a fuel cell is likely
to experience, then the behavior of water that is associated
strongly with the membrane must be treated and is not bulk-
like. While some of the water in a well hydrated membrane
might behave similarly to liquid water collected in open
pores, at lower water content, the water behaves more like
a solute species dissolved in the membrane.

For a fuel cell system that is not completely hydrated,
the strong dependence of ionic conductivity on water
content[38] demands that careful attention is paid in deter-
mining the concentration profile of water in the membrane;
this profile, in turn, has a strong effect on the ohmic losses
in the membrane. Perhaps the true nature of PEMs is one
that contains elements of both models: a phase that specif-
ically absorbs some water and imparts low levels of ionic
conductivity and a second phase that behaves primarily like
bulk water. These two approaches have not, as of yet, been
reconciled into an overarching, complete theory of mem-
brane transport that addresses all of the relevant issues.

5.7 Transport properties

Regardless of the details of model construction, reliable
data on transport properties are necessary to quantify
transport in PEMs. Perfluorosulfonate membranes with
structures like that shown in Figure 6, including Nafion,
have been characterized fairly extensively. The ionic
conductivity is generally measured by ac impedance
techniques,[39] and all of the models described above rely
on conductivity data to predict ohmic losses. The saturation
of the membrane can affect the conductivity and transport
properties greatly, and thus these effects must be taken into
account. Furthermore, the thickness can also appreciably
affect the transport properties.[40]

Fuller and Newman[28] devised a technique to measure
the electroosmotic drag coefficient of water in a PEM by
relating the drag coefficient to the open-circuit potential dif-
ference measured across a membrane with different water
concentrations in the membrane sections adjacent to the two
electrodes. This technique was repeated by researchers at
Los Alamos,[29] who also reported on volumetric measure-
ments performed on a membrane exposed to liquid water.
Water diffusion coefficients have proved difficult to mea-
sure in the PEM system, although they have been estimated
by NMR techniques.[41] Also of interest are molecular
simulations to calculate the transport properties of perfluo-
rosulfonate membranes from ab initio electronic structure
calculations and dielectric continuum modeling.[42]
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5.8 Transport of uncharged species in the
membrane

In general, the transport of additional uncharged species
is neglected in the models presently available in the
open literature. There are exceptions; notably, Bernardi
and Verbrugge[11] discuss the crossover of hydrogen and
oxygen in their paper, treating the transport of the gases
by convection and diffusion in the steady state. Springer
et al.[43] discuss the importance of the diffusion of hydrogen
and oxygen in the membrane and note that transport of
these species appears to be much higher in the catalyst
layers of the membrane electrode assembly (MEA) than
would be expected from measurements of crossover through
a membrane separator.

One system in which the movement of uncharged species
is particularly important is the direct methanol fuel cell
(DMFC), where methanol crossover occurs and compro-
mises fuel cell efficiency. Several models exist that describe
methanol crossover.[44, 45] These models generally treat
methanol as a minor species in the solution, transported
by diffusion and convection along with the water that is
present in much higher concentrations.

6 NUMERICAL SIMULATIONS

The complexity of the governing differential equations that
we have outlined for modeling porous electrodes gener-
ally precludes analytic solution, and numerical simulations
must be used. Numerical models lend themselves to the
incremental inclusion of ever greater levels of detail, which
cannot usually be said of analytic solutions. In fact, while it
may be possible to reduce the number of variables through
mathematical manipulation, this is often not the best course
of action because it reduces the flexibility of the program.
Furthermore, the increase in computation time is usually
modest, at least for a one-dimensional model. When con-
structing a numerical model, it is best to include a complete
picture of the cell sandwich in order to capture interactions
among the various components. Thus, for example, a one-
dimensional model of a PEM fuel cell could include the
regions outlined in Figure 1.

A useful approach to numerical modeling of porous
electrodes is as outlined below. Conservation equations are
cast in control volume form, as depicted schematically in
Figure 7. Patankar[46] describes this approach in detail. The
integer j is the spatial mesh point, the integer n is the
discretized time. Vectors are defined at half mesh points,
while scalars are defined at full mesh points. Reaction
terms are evaluated at quarter mesh points for each half
mesh box. In the case of material balances, this approach

Nj −½ Nj Nj Nj +½

n

n −1
j −½ j −¼ j j +¼ j +½

Figure 7. Schematic of the control volume approach for numer-
ical simulations.

rigorously conserves mass, which cannot be said of finite
difference methods. The coupled differential equations in
the spatial domain may be solved with a banded solver, such
as that described in Appendix C of Newman.[47] Crank-
Nicholson time stepping, which involves averaging the
equations symmetrically in time, is recommended in order
to achieve stability and second order accuracy in time.

6.1 Cathode simulation

In this section, we present steady state results from a
numerical model of the cathode of a PEM fuel cell.
The model presented in this work is similar to that of
Springer and co-workers[39, 43] and Perry et al.[48] Springer
and coworkers demonstrated how to use a model like this
to fit experimental data from lab-scale fuel cells. Perry
et al. examined limiting cases due to either oxygen or
ionic mass transport limitations within the catalyst layer.
We have selected the cathode for our example because it
is the most important electrode, in terms of polarization
losses, in PEM fuel cells operating on either hydrogen or a
reformed hydrocarbon fuel. A number of publications have
dealt with simulations of the cathode and limiting cases
that may arise under certain conditions. We discuss both of
these topics in this section. Furthermore, we mention some
of the diagnostic techniques that may be used to understand
what is limiting the performance of a fuel cell electrode.

The model treats the diffusion of oxygen through the
diffusion medium and the catalyst layer, ohmic drop in
the ionomeric and solid phases within the catalyst layer,
and oxygen reduction kinetics. Oxygen diffusion within
the catalyst layer is treated with Fick’s law, Ohm’s law
is used to describe the potential drop within the ionomeric
and solid phases, and the ORR is assumed to follow Tafel
kinetics with a first order dependence on the oxygen partial
pressure and a cathodic transfer coefficient of 1. The total
gas pressure and temperature are assumed constant. The
model does not treat the water generated by the reduction
of oxygen. Thus, the flow of water through the cathode
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catalyst layer and the diffusion medium does not affect the
oxygen transport. This is an important simplification that
limits the applicability of a model of this type, since water
management is a key to the proper design and operation of
a PEM fuel cell. The conductivity of the ionomer within
the catalyst layer is assumed to be constant, implying that
the hydration level of the ionomer is uniform.

The model contains the following five variables: �1,
the potential in the solid phase; �2, the potential in the
ionomeric phase; i1, the current density in the solid phase;
i2, the current density in the ionomeric phase; and xO2

, the
oxygen mole fraction. The interface between the membrane
and the catalyst layer is located at z = 0, while the interface
between the catalyst layer and the diffusion medium is
located at z = L. The boundary conditions are

�2|z=0 = 0

�1|z=L = V

i1|z=0 = 0

i2|z=L = 0

∇xO2
|z=0 = 0

and

xO2
|z=L = xb

O2

(
1 − i1|z=L

ilim

)
(51)

Thus, the ionomeric potential is arbitrarily set to 0 at z = 0,
the solid phase potential is set at the interface between the
catalyst layer and the diffusion medium, all of the current is
carried in the ionomeric phase at the membrane interface,
and all of the current is carried by the solid phase at the
diffusion medium interface. The oxygen mole fraction at
z = L is set in accordance with a mass transfer resistance in
the diffusion medium consistent with the limiting currents
in Table 2. In this model, it is assumed that no oxygen
diffuses past the interface between the catalyst layer and
the membrane.

The simulations were run using a program written in
FORTRAN using Newman’s BAND(J), MATINV, and
AUTOBAND subroutines.[47] The governing equations
were cast in finite difference form.

Table 2 gives the parameters used in the simulations.
These values are representative of state of the art PEM fuel
cells. The interfacial area per unit volume was selected to
give a catalyst surface area of 50 m2 g−1. The exchange
current density was selected to give a mass specific current
density of 200 mA mgPt

−1 at a cathode potential of 0.9 V
and an oxygen partial pressure of 1 bar. The value of the
limiting current on air is typical for a PEM system and is
assumed to be proportional to the oxygen mole fraction in
the gas channel.

Table 2. Input and varied parameters used for the numerical
simulations of a cathode under a base case, an ohmically limited
case, and a mass transfer limited case.

Input parameters
Temperature 65 ◦C
Total gas pressure 1 bar
Gas relative humidity 100%
Standard potential 1.195 V
Electrode thickness 10 µm
Platinum loading 0.4 mg cm−2

Cathodic transfer coefficient 1
Catalyst surface area 50 m2 g−1

Interfacial area per unit volume 2.00 × 105 cm2 cm−3

Exchange current density 1.51 × 10−8 A cm−2

Limiting current (air) 2.13 A cm−2

Limiting current (oxygen) 10.1 A cm−2

Channel oxygen mole fraction (air) 0.16
Channel oxygen mole fraction (oxygen) 0.75

Variable parameters
Base ohmic resistance 1.00 × 10−5 � cm2

High ohmic resistance 0.2 � cm2

Base oxygen diffusion coefficient 2.30 × 10−2 cm2 s−1

Low oxygen diffusion coefficient 2.00 × 10−4 cm2 s−1

Calculated parametersa

Roughness factor 200
i (0.9 V,1 bar O2) 200 mA mgPt

−1

i (0.9 V,1 bar O2) 400 µA cmPt
−2

aDerived from Ref. [40].

Three cases are considered. Case 1, the base case, sim-
ulates a cathode with negligible ohmic drop and negligible
oxygen mass transfer limitations within the catalyst layer.
Case 2 describes a cathode with significant ohmic lim-
itations, but negligible mass transfer limitations. Finally,
case 3 simulates an electrode with negligible ohmic limita-
tions, but significant mass transfer limitations within the
catalyst layer. The parameters for cases 2 and 3 were
selected to give similar polarization losses on air. The ohmi-
cally limited case may correspond to an electrode with
a low ionomer content, while the mass transfer limited
case may correspond to an electrode with a high ionomer
content. In practice, there is probably a natural trade-off
between ohmically limited electrodes and mass transfer lim-
ited electrodes.

Figure 8 shows polarization curves for the three cases on
fully humidified air and oxygen. At low current densities,
all of the electrodes are kinetically limited and perform
similarly. As the current density increases, the polariza-
tion associated with the ohmic and mass transfer effects
becomes significant, and the performance of the three elec-
trodes on air begins to deviate. At a current density of
1 A cm−2, the ohmic and mass transfer cases are approxi-
mately 50 mV below the kinetic case. All three cases have
the same limiting current, corresponding to zero oxygen



64 Part 2: Mass transfer in fuel cells

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

C
at

ho
de

 p
ot

en
tia

l (
V

)

0.01 0.1 1 10

Current density (A cm−2)

Base
Ohmic
Mass transfer

Oxygen

Air

Figure 8. Polarization curves for the base, ohmically limited, and
mass transfer limited cases of the cathode simulation for feeds of
humidified air and oxygen. The base case is as given in Table 2,
the ohmically limited case increases the ohmic resistance of the
base case, and the mass transfer limited case decreases the oxygen
diffusion coefficient of the base case.

partial pressure at the interface between the electrode and
the diffusion medium.

The oxygen polarization curves are instructive. The
ohmically limited electrode begins to deviate from the
base electrode at the same current density on oxy-
gen as it does on air. In the absence of external
mass transfer limitations, the differences in potential
between the base electrode and the ohmic electrode
at a fixed current density would be identical for oxy-
gen and air. The mass transport limited electrode, on
the other hand, begins to deviate from the base elec-
trode at the same cathode potential on oxygen as it
does on air. In this case, the differences in current
density between the base and mass transfer electrodes
at a fixed cathode potential are the same for oxygen
and air. Both of these results were reported by Perry
et al.[48]

Figure 9 shows the cathode potential as a function of
a mass transfer corrected current for the air simulations
on all three electrodes. This type of plot corrects for
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Figure 9. Polarization curves modified to remove external mass
transfer effects for the three cases of the cathode simulation on
air. The bold lines represent lines with single and double Tafel
slopes.

external mass transport limitations, and allows for changes
in the Tafel slope due to phenomena occurring within the
catalyst layer to be seen more clearly. All three elec-
trodes show a single Tafel slope at high potentials, as
expected, since there are only kinetic limitations. This sin-
gle slope extends through the entire potential range in
the case of the kinetically limited electrode. The mass
transfer electrode shows a distinct double Tafel slope at
lower cathode potentials due to a non uniform reaction
rate in the electrode caused by the strong mass trans-
fer limitations. The ohmic electrode shows an increased
slope, but not a double Tafel slope on this scale. Mass
transport limitations internal to the catalyst layer are, in
the absence of ohmic limitations, a function of potential,
while ohmic limitations, in the absence of mass trans-
fer limitations, are a function of current density. This
explains why the double Tafel slope due to mass trans-
fer limitations is visible on this plot while the double
Tafel slope due to ohmic limitations is not. Thus, it
may be possible to discern between mass transfer lim-
ited and ohmically limited electrodes by plotting data
this way.
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The difference in potential between the oxygen and air
curves at a given current density, the oxygen gain, is simply

VO2
− Vair = RT

αF
ln

(
xO2,ox

xO2,air

)
(52)

The oxygen gain increases with increasing current density
as mass transport losses become more important, and it
is larger for the mass transfer limited cathode than it is
for either the ohmic electrode or the kinetic electrode.
It can be shown that, in the absence of external mass
transfer limitations, the oxygen gain for an ohmically
limited system retains its value, while the oxygen gain
for the mass transfer limited electrode doubles. Figure 10
elaborates on this point by plotting the ratio of current
density measured on oxygen to the current density measured
on air at the same cathode potential. This ratio is equal to
xO2,ox/xO2,air = 4.76 for both the kinetic and mass transfer
limited electrodes at all potentials. Thus, these electrodes
show a first order dependence on oxygen concentration at
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Figure 10. Ratio of current density measured on oxygen to the
current density measured on air as a function of the potential of
the cathode for all three cases of the cathode simulation. The
mass transfer limited and base cases are the same, and equal the
theoretical ratio for a kinetically or mass transfer limited electrode.
Line A is the theoretical ratio for a completely ohmically limited
electrode.

all potentials. The ratio is 4.76 for the ohmically limited
electrode at high potentials, where the electrode kinetics
dominate. As the electrode potential drops, and the current
density increases, the ratio falls, approaching the square root
of 4.76 (line A in Figure 10). This behavior was explained
by Perry et al.[48] At higher current densities, mass transport
resistance in the diffusion medium, which is first order in
oxygen, dominates, and the ratio again approaches 4.76.
Thus, ohmic limitations within the electrode can lead to
an apparent reaction order of 1/2, while mass transfer
limitations may lead to an apparent reaction order of 1,
with respect to oxygen.

Figures 11 and 12 show the current, potential, and
oxygen distributions at 0.7 V on air for the ohmically
limited and mass transfer limited electrodes, respectively.
The current densities for these cases are approximately
1.1 and 1.2 A cm−2, respectively. In the ohmically limited
case, the reaction is shifted towards the interface between
the membrane and the catalyst layer. The potential drop
in the ionomer is about 70 mV, or approximately L/(3κ).
For reference, a value of L/(2κ) is expected for a uniform
current distribution. In the mass transfer limited case, the
current is shifted towards the interface between the catalyst
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Figure 11. Potential, current density, and oxygen distributions in
the solid and electrolyte phases of the cathode for the ohmically
limited case. The cathode is at a potential of 0.7 V, and the feed
is humidified air.
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Figure 12. Current density, potential, and oxygen distributions
in the solid and electrolyte phases of the cathode for the mass
transfer limited case. The cathode is at a potential of 0.7 V, and
the feed is humidified air.

layer and the diffusion medium; nearly all of the current is
transferred between z = 0.5 and z = 1. These profiles agree
with the double Tafel slope seen in Figure 9.

Figure 13 shows the effect of catalyst loading on air
performance at a cathode potential of 0.8 V. The thickness
of the catalyst layer was assumed to be proportional to the
catalyst loading. If the catalyst were uniformly accessible,
the result would be a straight line, but even the base case
curves at high current densities because of the mass transfer
resistance in the diffusion medium. The ohmic and mass
transfer cases lose a significant amount of performance at
high catalyst loadings. At very high loadings, the current in
the mass transport limited electrode becomes independent
of loading as the oxygen only penetrates a small region
near the interface with the diffusion medium. Similarly, in
the ohmically limited electrode, there is no advantage to
increasing the loading beyond a certain point, as the ohmic
limitations confine the reaction to a thin layer near the
interface between the membrane separator and the catalyst
layer. These limitations are clearly visible in Figures 11 and
12. Perry et al.[48] and Newman[47] present dimensionless
groups that may be used to assess the importance of kinetic,
ohmic, and mass transfer effects.
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Figure 13. Effect of catalyst loading on current density at a
cathode potential of 0.8 V and a feed of humidified air for all
three cases of the cathode simulation.

7 FUEL CELL MODELS

The cathode simulations described in the preceding section
provide an introduction to the mathematical modeling of
fuel cells, emphasizing the relationships between kinetic,
mass transfer, and ohmic effects. The particular system
was selected in order to yield interesting, important, and
realistic results. Simple models like the one described in
this work are useful as they can guide our thinking about the
behavior of fuel cells. However, it is worthwhile to consider
important additional effects that could be incorporated into
a fuel cell model.

Consideration of an entire fuel cell cross-section repre-
sents an important advance since it allows one to examine
interactions among the different layers. In the PEM case,
communication of water between adjacent layers is of par-
ticular interest since proper water management is a key
aspect of the design of PEM fuel cells. Bernardi and
Verbrugge[11] treat the water balance in a fuel cell when
the membrane is fully saturated at all times. The transport
of liquid water through the various components is treated
with Darcy’s law, assuming constant permeabilities. Inter-
estingly, in their simulations, the diffusion media are more
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resistive to water flow than the Nafion membrane. Since
the porosities of the two components are reasonably sim-
ilar, and the pores are probably significantly larger in the
substrate than in the ionomer, this suggests that the satu-
ration level of the substrate is quite low. A low saturation
level is desired in the diffusion media in order to minimize
the resistance to gas phase mass transfer.

Fuller and Newman[33] treat the water balance when the
gas streams, and therefore, the membrane, are subsaturated.
They use concentrated solution theory and their model
solves explicitly for water and potential profiles in the
membrane. Fuller and Newman integrated in the channel
direction, following a procedure similar to the one described
in this chapter. This allowed them to look at reactant
depletion, water generation, and thermal effects. Nguyen
and White[32] constructed a model in the channel direction
applicable to cocurrent and countercurrent flow arrange-
ments and examined various humidification schemes.

The models that we have focused on thus far involve
a one-dimensional description of transport in the direction
normal to the membrane. Two-dimensional effects may be
important because the ribs in a fuel cell usually occlude
part of the membrane. Kulikovsky et al.,[49] among others,
have modeled this behavior. Finally, if uncoupling the
different length scales is considered undesirable, full three-
dimensional models can be pursued.[50]

8 CONCLUSIONS

In this chapter, we reviewed some of the models that have
been developed to describe fuel cell performance. Even
the simplest models provide some insight into the selec-
tion of proper operating conditions and, as such, can be
very instructive tools. In designing a fuel cell, the details of
mass transport within the layers of the cell should be exam-
ined. It is the interaction of several simultaneous processes,
namely, ionic resistance, gas phase mass transport, kinetic
losses, and liquid water removal, which make fuel cell oper-
ation possible. A detailed knowledge of these interrelated
processes is necessary to develop a system that behaves
optimally. It is perhaps worth noting that, were it possible
to neglect completely any of these effects, one might con-
clude that the PEM fuel cell system is far from optimized.
The fact that all of these effects must be considered in con-
cert implies that the PEM fuel cell is nearly optimized for
the present class of materials, as the improvement of one
process often comes at the detriment of another. Modeling
and analysis based upon the techniques reviewed in this
chapter will assist fuel cell scientists and engineers to opti-
mize fuel cells based upon the materials that will be the
focus of future developmental efforts.

LIST OF SYMBOLS

Roman

aα
i activity of species i in phase α

ak,p interfacial surface area between phases k and p

per unit volume, cm−1

b Tafel slope, V
ci concentration of species i per unit pore volume,

mol cm−3

ci,k concentration of species i in phase k, mol cm−3

cT total solution concentration or molar density,
mol cm−3

C number of species
d pore diameter, cm
di driving force per unit volume acting on species

i, J cm−4

Di Fickian diffusion coefficient of species i in a
mixture, cm2 s−1

Da dispersion coefficient, cm2 s−1

Di,j diffusion coefficient of i in j , cm2 s−1

DKi
Knudsen diffusion coefficient of species i,
cm2 s−1

f the ratio of moles of inerts in the air stream to
moles of inerts in the fuel stream

Fa molar flow rate of carbon dioxide at the anode,
mol s−1

F Faraday’s constant, 96487 C eq−1

ik current density in phase k, A cm−2

i0 exchange current density, A cm−2

ih,k transfer current density per unit interfacial area
between phase k and the solid phase due to
reaction h, A cm−2

ilim limiting current density, A cm−2

k permeability, cm2

ksat permeability measured at complete saturation,
cm2

kp hydraulic permeability, cm2

k� electrokinetic permeability, cm2

k′ Kozeny constant
L catalyst layer thickness, cm
m exponent in equation (38), usually equal to 3
M number of degrees of freedom in equation (13)
Mi molecular weight of species i, g mol−1

M
zi

i symbol for the chemical formula of species i in
phase k having charge zi

nh number of electrons transferred in electrode
reaction h

N number of species
Ni superficial flux density of species i, mol

cm−2 s−1

Ni,k flux density of species i in phase k, mol cm−2 s−1



68 Part 2: Mass transfer in fuel cells

p total gas pressure, bar
pi partial pressure of species i, bar
pc capillary pressure, bar
pL hydraulic or liquid pressure, bar
pvap vapor pressure of water, bar
P number of phases in equation (13)
rl,k−p rate of reaction l per unit of interfacial area

between phases k and p, mol s−1 cm−2

Rg,k rate of strictly homogenous reaction g in phase
k, mol s−1 cm−3

R′ ohmic resistance, � cm2

R universal gas constant, 8.3143 J mol−1 K−1

R number of equilibrated reactions in equation (13)
si,k,l the stoichiometric coefficient of species i in

phase k participating in reaction l

S saturation
So surface area to volume of solid phase, cm−1

Si molar entropy of species i, J mol−1 K−1

t time, s
T absolute temperature, K
u hydrogen utilization
ui mobility of species i, cm2 mol J−1 s−1

U reversible cell potential, V
U ′ potential intercept for the polarization equation,

V
U θ standard potential for oxygen reduction, 1.229 V

at 25 ◦C
vi interstitial velocity of species i, cm s−1

V cell potential, V
W width perpendicular to flow in gas channel, cm
xi mole fraction of species i

Xi extensive term referring to body forces per mole
acting on species i

Xi ratio of moles of species i to moles of inerts in
the same stream

y distance down the flow field channel, cm
z distance across the cell sandwich, cm
zi valence or charge number of species i

Greek

α transfer coefficient for ORR
β symmetry factor
δ diffusion length, cm
ε porosity
εk volume fraction of phase k

�1 potential in the solid phase, V
�2 potential in the ionically conducting phase, V
ηs surface overpotential, V
κ conductivity of the electrolytic phase, S cm−1

µ viscosity, g cm−1 s−1 or Pa s

µi chemical potential of species i in equation (29),
J mol−1

µi electrochemical potential of species i, J mol−1

µα
i electrochemical potential of species i in phase α,

J mol−1

θ contact angle, degrees
ρ solution density, g cm−3

σ surface tension in equation (39), N cm−1

σ conductivity in the solid phase, S cm−1

τ tortuosity
ξ electroosmotic drag coefficient

Subscripts

0 solvent or bulk value
1 solid, electronically conducting phase
2 ionic conducting phase
f fixed ionic site in the polymer membrane electrolyte
g homogeneous reaction number
h electron transfer reaction number
i generic species
j generic species
k generic phase
l heterogeneous reaction number
m membrane
p generic phase

Superscripts

0 inlet or initial value
b bulk value
e effective, corrected for tortuosity
i electrode interface value
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